Verifying a Solution for a First-Order Partial Differential Equation

Problem Statement and Given Solution

We are tasked with showing that the given function $u$ satisfies the following partial differential equation (PDE):

π‘₯πœ•π‘’πœ•π‘₯βˆ’π‘¦πœ•π‘’πœ•π‘¦=𝑦2𝑒3

The proposed solution is:

𝑒=(1+2π‘₯𝑦+𝑦2)βˆ’12

1. Calculate the Partial Derivative πœ•π‘’/πœ•π‘₯

Using the chain rule, we differentiate $u$ with respect to $x$:

πœ•π‘’πœ•π‘₯=βˆ’12(1+2π‘₯𝑦+𝑦2)βˆ’32β‹…(2𝑦)=βˆ’π‘¦(1+2π‘₯𝑦+𝑦2)βˆ’32

2. Calculate the Partial Derivative πœ•π‘’/πœ•π‘¦

Using the chain rule, we differentiate $u$ with respect to $y$:

πœ•π‘’πœ•π‘¦=βˆ’12(1+2π‘₯𝑦+𝑦2)βˆ’32β‹…(2π‘₯+2𝑦)=βˆ’(π‘₯+𝑦)(1+2π‘₯𝑦+𝑦2)βˆ’32

3. Substitute Derivatives into the Left-Hand Side (LHS)

We substitute the calculated partial derivatives into the expression $π‘₯πœ•π‘’πœ•π‘₯βˆ’π‘¦πœ•π‘’πœ•π‘¦$:

π‘₯[βˆ’π‘¦(1+2π‘₯𝑦+𝑦2)βˆ’32]βˆ’π‘¦[βˆ’(π‘₯+𝑦)(1+2π‘₯𝑦+𝑦2)βˆ’32]

Simplifying the signs:

=βˆ’π‘₯𝑦(1+2π‘₯𝑦+𝑦2)βˆ’32+𝑦(π‘₯+𝑦)(1+2π‘₯𝑦+𝑦2)βˆ’32

4. Factor and Simplify the LHS

We factor out the common term $(1+2π‘₯𝑦+𝑦2)βˆ’32$:

=(1+2π‘₯𝑦+𝑦2)βˆ’32[βˆ’π‘₯𝑦+𝑦(π‘₯+𝑦)]

Expand the terms inside the brackets:

=(1+2π‘₯𝑦+𝑦2)βˆ’32[βˆ’π‘₯𝑦+π‘₯𝑦+𝑦2]

The $xy$ terms cancel out, leaving the simplified LHS:

=(1+2π‘₯𝑦+𝑦2)βˆ’32[𝑦2]

5. Express the Result in Terms of $u$

We relate the simplified LHS back to the original function $u$. Since $𝑒=(1+2π‘₯𝑦+𝑦2)βˆ’12$, we find $u^3$:

𝑒3=((1+2π‘₯𝑦+𝑦2)βˆ’12)3=(1+2π‘₯𝑦+𝑦2)βˆ’32

Substituting $u^3$ into the final LHS expression from Step 4:

𝑦2(1+2π‘₯𝑦+𝑦2)βˆ’32=𝑦2𝑒3

Thus, we have successfully shown that $π‘₯πœ•π‘’πœ•π‘₯βˆ’π‘¦πœ•π‘’πœ•π‘¦=𝑦2𝑒3$. The given solution satisfies the PDE.