Understanding Forces: Normal, Tension, Friction, and Rotation
Normal Force
N = -p
F = m * a
Inclined Surface
a = g * sin(θ)
Weight on the inclined plane:
Px = P * sin(θ)
Py = P * cos(θ)
Tension
T = -p
Two Strings Attached
With an angle:
T = p / (2 * sin(θ))
Two Strings Attached
Without an angle:
T = p / 2
Dragging an Object
T = F – m1 * a
Pendulum in Wagon
x coord: T * sin(θ) = m * a
y coord: T * cos(θ) – m * g = 0
tan(θ) = a / g
T = m * g / cos(θ)
Elastic Force
F = K * Δx (stretch)
F = -K * Δx (compression)
Spring (Vertical)
F = p -> p = K * Δy
K = Δy / g
Friction Forces
Static Friction Force: Fs = μs * N
μs = tan(θ) -> μ = P * sin(θ) / P * cos(θ)
Kinetic Friction Force: Fk = μk * N
μk = (g * sin(θ) – a) / (g * cos(θ))
μk < μs
F – μ * m * g = m * a
a = (F – μ * m * g) / m
Case Studies
Two Bodies on a Table with Pulley (No Angle)
T – Ff = m1 * a
P2 – T = m2 * a
Atwood Machine
a = ΔF / mtotal = (m2 – m1) / (m1 + m2) * g
T – p = m * a
Object Moving Up an Inclined Plane
(Force acting on m)
F – Px – Ff = m * a
F – m * g * sin(θ) – μs * m * g * cos(θ) = m * a
Object Moving Down an Inclined Plane (Two Bodies, No Friction)
m1 * g * sin(θ) – T = m1 * a
m2 * g – T = m2 * a
Friction on Inclined Plane
x coord: g * sin(θ) – Ff = a
y coord: N – m * g * cos(θ) = 0
Ff = μ * m * g * cos(θ)
a = g * (sin(θ) – μk * cos(θ))
Elevator
Going Up: N – m * g = m * a
T – m * g = m * a
Going Down: N + m * g = m * a
T + m * g = m * a
Rotating Body Tied to a Rope (No Friction)
Body in a Rotating Horizontal Surface (No Friction)
ΣF = m * a
T + N + p = m * a
Components:
x: T = m * a
y: N – p = 0
T = m * v2 / R
T = m * ω2 * R
Body Tied to a Table with Another Below (No Angle)
ω = √(m1 * g / (m2 * R)) (m1 = below table)
Body in a Rotating Vertical Plane
ΣF = m * a
T – p = m * a
T + p = m * a
p = m * v2 / R
v = √(g * R)
Minimum velocity at the highest point:
v = √(m * g / (m * R))
an = v2 / R
at = Δv / Δt
Body Rotating in a Horizontal Plane
ΣF = m * a
p + T = m * a
Components:
Tx = T * sin(θ)
Tx = m * a
T = m * (v2 / R) / sin(θ)
Ty = T * cos(θ)
T – p = 0
T = m * g / cos(θ)
tan(θ) = v2 / (R * g)
sin(θ) = R / l
If you just give angle, radius and tension:
T * sin(θ) = m * a
Rotating Body When Friction Acts
Body Rotating on a Horizontal Surface with Friction
ΣF = m * a
Ff + p + N = m * a
Components:
x: Ff = m * a
y: N – p = 0
μ = v2 / (R * g)
Rotor
ΣF = m * a
Ff + p + N = m * a
Components:
x: N = m * a
y: p – Ff = 0
Ff = μ * N (N = m * g)
N = m * g / μ
N = m * ω2 * R
v = √(g / μ * R)
Peralta Curve
ΣF = m * a
p + N = m * a
Components:
x: N * sin(θ) = m * v2 / R
y: N * cos(θ) – m * g = 0
Therefore: tan(θ) = v2 / (R * g)