Essential Math Formulas and Definitions

Lines

Slope-Intercept Form

y = mx + b

Point-Slope Form

y – y₁ = m(x – x₁)

Standard Form

Ax + By = C

Rate of Change (Slope)

Δy/Δx = (y₁ – y₂)/(x₁ – x₂)

Algebra Formulas

Quadratic Equations

Standard Form

ax² + bx + c = 0

Quadratic Formula

x = [-b ± √(b² – 4ac)] / (2a)

Binomial Expansions

(a + b)³ Expansion

a³ + 3a²b + 3ab² + b³

(a – b)³ Expansion

a³ – 3a²b + 3ab² – b³

(a + b)² Expansion

a² + 2ab + b²

(a – b)² Expansion

a² – 2ab + b²

Exponent Rules

Product Rule

xᵃ · xᵇ = xᵃ⁺ᵇ

Quotient Rule

xᵃ / xᵇ = xᵃ⁻ᵇ

Power Rule

(xᵃ)ᵇ = xᵃᵇ

Negative Exponent

x⁻ᵃ = 1 / xᵃ

Logarithm Rules

Product Rule

logₐ(xy) = logₐ x + logₐ y

Quotient Rule

logₐ(x/y) = logₐ x – logₐ y

Power Rule

logₐ(xᵏ) = k logₐ x

Change of Base

logₐ b = ln b / ln a

Geometry Formulas

Sphere Formulas

Surface Area

SA = 4πr²

Volume

V = (4/3)πr³

Cone Formulas

Surface Area

SA = πr(r + h)

Volume

V = (1/3)πr²h

Trapezoid Area

A = ½(b₁ + b₂)h

Trigonometry Formulas

Right Triangle Ratios

Sine (sin θ)

opposite / hypotenuse

Cosine (cos θ)

adjacent / hypotenuse

Tangent (tan θ)

opposite / adjacent

Unit Circle Ratios

Sine (sin θ)

y/r

Cosine (cos θ)

x/r

Tangent (tan θ)

y/x

Reciprocal Identities

Cosecant (csc θ)

1 / sin θ

Secant (sec θ)

1 / cos θ

Cotangent (cot θ)

1 / tan θ

General Identity

sin θ · csc θ = 1 (and similarly for sec · cos, cot · tan)

Pythagorean Identities

Identity 1

sin² x + cos² x = 1

Identity 2

1 + tan² x = sec² x

Identity 3

1 + cot² x = csc² x

Double-Angle Identities

Sine (sin 2θ)

sin(2θ) = 2 sin θ cos θ

Cosine (cos 2θ)

cos(2θ) = cos² θ – sin² θ = 1 – 2 sin² θ = 2 cos² θ – 1

Sum-Difference Identities

Sine (sin(u±v))

sin(u±v) = sin u cos v ± cos u sin v

Cosine (cos(u±v))

cos(u±v) = cos u cos v ∓ sin u sin v

General Sinusoid Form

Sine Form

y = a sin[b(θ – c)] + d

Cosine Form

y = a cos[b(θ – c)] + d

Tangent Function Form

y = a tan[b(θ – c)] + d

Functions & Domains

Function Types

Even Function

f(–x) = f(x)

Odd Function

f(–x) = –f(x)

Domain Restrictions

Square Root

For √[s(x)], require s(x) ≥ 0.

Reciprocal

For 1/s(x), require s(x) ≠ 0.

Natural Logarithm

For ln[s(x)], require s(x) > 0.

Calculus Formulas

Limits

Limit sin(cx)/x

limₓ→0 [sin(cx)/x] = c

Limit (cos(cx)-1)/x

limₓ→0 [(cos(cx) – 1)/x] = 0

Continuity

Definition at x = c

limₓ→c f(x) = f(c)

Derivatives

Definition

f′(x) = limₕ→0 [f(x+h) – f(x)] / h

Product Rule

(uv)′ = u′v + uv′

Quotient Rule

(u/v)′ = (u′v – uv′) / v²

Chain Rule

d/dx [f(g(x))] = f′(g(x)) · g′(x)

Derivative ln u

(ln u)′ = u′ / u

Derivative eᵘ

(eᵘ)′ = u′ eᵘ

Derivative sin u

(sin u)′ = u′ cos u

Derivative cos u

(cos u)′ = –u′ sin u

Derivative tan u

(tan u)′ = u′ sec² u

Inverse Trig Derivatives

  • arcsin u: u′ / √(1 – u²)
  • arccos u: –u′ / √(1 – u²)
  • arctan u: u′ / (1 + u²)

Other Trig Derivatives

  • d/dx [cot(u)] = –csc²(u) · u′
  • d/dx [sec(u)] = sec(u) · tan(u) · u′
  • d/dx [csc(u)] = –csc(u) · cot(u) · u′

Second Derivative Notation

f″(x) or d²y/dx²

Inverse Function Derivative

(f⁻¹)′(x) = 1 / f′(f⁻¹(x))

Theorems

Rolle’s Theorem & Mean Value Theorem

Key calculus theorems.

L’Hôpital’s Rule

lim f/g = f′/g′ under 0/0 or ∞/∞ indeterminate forms.

Integrals

Definite Integral (Riemann Sum)

∫ₐᵇ f(x) dx = limn→∞ Σk f(xk) · Δx

Analytic Geometry

Asymptotes

Oblique Asymptotes

Occur when degree of numerator = degree of denominator + 1. Find using polynomial division.

Conic Sections

  • Circle: (x–h)² + (y–k)² = r²
  • Ellipse: (x–h)²/a² + (y–k)²/b² = 1
  • Parabola (Vertical): (x–h)² = 4p(y–k)
  • Parabola (Horizontal): (y–k)² = 4p(x–h)
  • Hyperbola: (x–h)²/a² – (y–k)²/b² = 1

Coordinate Conversions

Polar to Rectangular

x = r cos θ, y = r sin θ

Rectangular to Polar

r = √(x² + y²), θ = arctan(y/x)

Linear Algebra (2×2)

Matrix Formulas

Determinant

For matrix [[a, b], [c, d]], det(A) = ad – bc

Inverse

For matrix [[a, b], [c, d]], A⁻¹ = (1/det(A)) · [[d, –b], [–c, a]]

Complex Numbers

Trigonometric Form

z = r(cos θ + i sin θ)